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In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation
for describing anomalous diffusion has been investigated. Two finite difference schemes
namely an explicit predictor–corrector and totally implicit schemes have been developed.
In developing each scheme, a separate formulation approach for the governing equations
has been considered. The explicit predictor–corrector scheme is the fractional generaliza-
tion of well-known MacCormack scheme and has been called Generalized MacCormack
scheme. This scheme solves two coupled low-order equations and simultaneously com-
putes the flux term with the main variable. Fully implicit scheme however solves a single
high-order undecomposed equation. For Generalized MacCormack scheme, stability anal-
ysis has been studied through Fourier method. Through a numerical test, the experimental
order of convergency of both schemes has been found. Then, the domain of applicability
and some numerical properties of each scheme have been discussed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the validity of using standard diffusive constitutive models such as Fourier or Fick’s law has been ques-
tioned extensively. The main reason returns to the underlying physical deficiency of these models which consider infinite
speed for propagation of a diffusive quantity such as temperature or mass in the medium. In order to consider the finite
velocity of propagation, several new constitutive models have been introduced. Among them, Cattaneo model has been used
very extensively in modelling both heat and mass transfer [1–4]. However, it has been experimentally observed in many nat-
ural systems that diffusive processes behave anomalously [5]; i.e. mean-square-displacement (MSD) in these complex sys-
tems does not follow standard linear behaviour and takes the form MSD = Kta, where a is the anomalous diffusion exponent.
This anomalous behaviour has been recently described through the fractional generalization of classical Cattaneo model as a
phenomenological constitutive equation in the following 1-D form [5]:
f ðx; tÞ þ sa oaf ðx; tÞ
ota

¼ �D
ouðx; tÞ

ox
; 0 < a 6 1; ð1Þ
where s is the relaxation time, D is the diffusion constant, f is the flux, u is the diffusing quantity and oa/ota is the fractional
(non-integer) time derivative based on Riemann–Liouville definition. For a = 1, Eq. (1) reduces to standard Cattaneo model
and for the limiting case of a ? 0 (or s = 0), classical diffusive models of Fourier or Fick law are recovered. Combining Eq. (1)
with continuity equation:
. All rights reserved.
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ouðx; tÞ
ot

¼ � of ðx; tÞ
ox

; ð2Þ
results in the generalized Cattaneo equation:
ouðx; tÞ
ot

þ sa o1þauðx; tÞ
ot1þa ¼ D

o2uðx; tÞ
ox2 : ð3Þ
Recently, Eq. (1) has been used as a constitutive equation for deriving a pseudo-heterogeneous model for describing the
reaction–diffusion problem in a disordered porous medium by using the method of volume averaging [6]. Using fractional
calculus in different fields of science and engineering specially those related to diffusion in porous medium is growing very
rapidly [7–9]. One of the main reasons is its great ability in describing the memory and hereditary properties of the system.
Consequently, developing new and efficient numerical schemes for solving Fractional Partial Differential Equations (FPDEs)
has been the target of recent investigations in numerical analysis. One possible classification of FPDEs is space and time-frac-
tional diffusion models. Since Eq. (3) falls in time-fractional diffusion equations (TFDEs), we focus on recent investigations
concerning numerical approximation of time FPDEs. Langlands and Henry [10] investigated TFDEs using an implicit and
unconditionally stable numerical scheme based on L1 scheme introduced in [11]. Yuste and Acedo [12] employed Grün-
wald–Letnikov definition of fractional derivative and developed an explicit scheme and found the stability condition through
Von Neumann stability criterion. Yuste [13] extended their previous work and developed a so called weighted average dif-
ference scheme which in contrast to their previous work [12] which was conditionally stable, may become unconditionally
stable by choosing a proper weighting parameter. By using spectral method, Lin and Xu [14] first discretized the time-frac-
tional derivative based on the Caputo definition and then developed an implicit and unconditionally stable scheme for solv-
ing TFDEs. Time fractional Fokker–Plank equation has been solved numerically in [15] by using a predictor–corrector
approach. The author actually increased the accuracy and reduced the cost of previously introduced predictor–corrector
schemes [16,17] by changing the numerical approximation in predictor formula. In [18], based on the Grünwald–Letnikov
definition, a fully implicit scheme has been developed. Then, by using Fourier stability analysis, it has been shown that
the implicit scheme is unconditionally stable. Scherer et al. [19] employed Grünwald–Letnikov scheme for numerically solv-
ing the fractional heat equation used for modelling heat transfer in a specific porous medium. They developed a general for-
mulation consisting of explicit, implicit and fully implicit schemes and studied the stability and accuracy of the proposed
methods. In [20], a new discretization based on numerically approximating the Caputo definition has been proposed for
0 < a < 1. Again, by using Grünwald–Letnikov definition for approximating time fractional derivative, Cui [21] successfully
increased the spatial accuracy by using a compact finite difference.

In the present paper, by using the concept of single-phase lag equation [22] and the recently introduced fractional Taylor
series expansion formula [23], we first derive the generalized Cattaneo model based on Caputo time fractional definition
which enables us to use traditional initial conditions. Then, we investigate the numerical solution of the generalized Catta-
neo equation by developing two explicit and implicit schemes. The explicit predictor–corrector scheme is the fractional gen-
eralization of the well-known MacCormack scheme for solving hyperbolic equations and is called Generalized MacCormack
(GMcC) scheme. In developing these two schemes, we have used two different approaches. GMcC scheme has been devel-
oped for solving two coupled lower-order equations; however for fully implicit (FI) scheme, single higher-order equation is
solved. Former approach has been called lower-order approach (LOA) while the latter is called higher-order approach (HOA).
As we will see, this simple idea of LOA offers us great gains and opens new directions for using higher-order explicit schemes
for solving anomalous diffusion equations. Finally, the range of applicability and also some numerical properties of both
schemes such as stability and experimental order of convergency are studied through numerical tests.

2. Caputo-based generalized Cattaneo equation

Several definitions of a fractional derivative have been proposed, for example the definitions of Riemann–Liouville, Grün-
wald–Letnikov and Caputo [7]. From the historical point of view, Riemann–Liouville definition seems to be the most impor-
tant definition among the others, because many of the later achievements of fractional calculus have come from this
definition. Caputo definition enables us to use initial/boundary conditions of practical type in the formulation. In the present
study initial conditions of practical type are of interest since fractional derivative has been applied in time domain. Also it
has the advantage of employing the classical Laplace transform for fractional derivatives which is very useful in deriving the
analytic solution. In other words, Riemann–Liouville definition is more preferred in pure mathematics, but not in applied and
engineering problems which involve standard definitions for initial/boundary conditions. For this reason, Caputo definition is
preferred in modeling practical problems. On the other hand, Grünwald–Letnikov definition serves as an efficient definition
for numerical approximation of a fractional derivative based on Riemann–Liouville definition, since these two definitions are
equivalent for a wide class of functions. These three definitions are defined as [7]:
Riemann—Liouville : 0Da
R�Lf ðtÞ � daf

dta
� 1

Cðm� aÞ
om

otm

Z t

0

f ðsÞ
ðt � sÞaþ1�m ds; m� 1 6 a < m; m 2 N; ð4Þ
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Grunwald—Letnikov : Daf ðtÞ � daf
dta
� 1

Dta

X½t=Dt�

k¼0

xa
k f ðt � kDtÞ; where xa

k ¼ ð�1Þk
a
k

� �
ð5Þ

Caputo : Da
� f ðtÞ �

daf
dta
� 1

Cðm� aÞ

Z t

0

f ðmÞðsÞ
ðt � sÞaþ1�m ds; m� 1 < a < m; m 2 N; ð6Þ
The difference between Caputo and Riemann–Liouville definition is
Da
� f ðtÞ � Da

R�Lf ðtÞ ¼ �
Xm�1

k¼0

tk�a

Cðkþ 1� aÞ f
ðkÞð0Þ; m� 1 < a 6 m: ð7Þ
We aim to derive generalized Cattaneo Eq. (1) based on Caputo definition. To do this, we get help from the well-estab-
lished concept of phase (time)-lagging in the field of heat transfer. As it is mentioned in [22] and the references cited therein,
classical Cattaneo constitutive model (a = 1 in Eq. (1)) can be derived directly through Taylor series expansion of the single-
phase-lag delayed constitutive relation f(x,t + s) = �Dou/ox up to first order. In the same way, in order to arrive at fractional
Cattaneo model (1), instead of expanding single-phase-lag delayed equation f(x,t + s) = �Dou/ox by classical Taylor formula,
we expand it up to first order through the recently introduced fractional Taylor formula [23] in the following form:
f ðx; t þ sÞ ’ f ðx; tÞ þ sa

Cð1þ aÞ
oaf ðx; tÞ

ota
¼ �D

ouðx; tÞ
ox

; 0 < a 6 1: ð8Þ
Without losing the generality we can merge C(1 + a) in sa which results in:
f ðx; tÞ þ sa oaf ðx; tÞ
ota

¼ �D
ouðx; tÞ

ox
; 0 < a 6 1: ð9Þ
Therefore, from Eq. (9) it is clear that Eq. (1) is rederived but this time the time-fractional operator in Eq. (9) is based on
Caputo definition because, the fractional Taylor series which is applied for the derivation of Eq. (9) is valid only with Caputo
definition [23].

Then, by combining Eq. (9) with Eq. (2) we arrive at generalized Cattaneo equation based on Caputo definition:
ouðx; tÞ
ot

þ sa o1þauðx; tÞ
ot1þa ¼ D

o2uðx; tÞ
ox2 : ð10Þ
Therefore, the generalized Cattaneo model in the sense of Riemann–Liouville definition is now transformed to generalized
Cattaneo model in the sense of Caputo definition through applying the fractional Taylor series formula on the single-phase-
lag constitutive equation f(x,t + s) = �Dou/ox.

In summary, the governing equations of this paper are Eqs. 2, 9, 10. For the GMcC scheme, two coupled equations of (2)
and (9) are solved simultaneously while for FI scheme, a single Eq. (10) is solved. Also, all the time-fractional operators in
these three equations are now defined based on Caputo derivative.

3. Generalized MacCormack scheme

As mentioned in the introduction, the formulation of GMcC scheme, in contrast to the FI scheme, is based on the idea of
LOA, i.e. solving a set of coupled time-fractional equations. So, for introducing GMcC scheme, we first formulate it for the case
of a scalar (single) time-fractional equation. This single time-fractional equation serves as a model equation for LOA formu-
lation of generalized Cattaneo equation. Then the stability of the derived scheme is analyzed using the Von Neumann sta-
bility criterion. Then, the results of the discussion made for a single time-fractional equation are extended for the case of
systems of time-fractional equations. The extension is made rather easily and allows us not be involved in the complexities
of applying GMcC scheme directly for systems of equations. This approach is very common in developing numerical schemes
and studying their numerical properties for the well-known system of hyperbolic equations such as Euler, shallow water and
thermal wave equations.

And finally, the formulation of GMcC scheme for the generalized Cattaneo equation is presented in the next section as a
special case of systems of time-fractional equations.

3.1. Generalized MacCormack scheme for a scalar time fractional conservation equation

Consider the following scalar time-fractional equation:
oau
ota
þ of ðuÞ

ox
¼ 0:0; ð11Þ
where u and f are called scalar conserved quantity and scalar flux function, respectively. Eq. (11) can be called scalar time-
fractional conservation equation and for the special case of a = 1, it reduces to classical scalar conservation equation. Eq. (11)
serves as the model equation for systems of time-fractional conservation equations.



H.R. Ghazizadeh et al. / Journal of Computational Physics 229 (2010) 7042–7057 7045
First, for some positive integers N and M let:
tn ¼ nDt n ¼ 0;1; . . . ;N;
and
xi ¼ jDx; j ¼ 0;1; . . . ;M;
where the grid sizes in time and space are defined respectively by Dt = T/N and Dx = L/M.
As mentioned before, Grünwald–Letnikov definition serves as the numerical approximation of Riemann–Liouville defini-

tion. However, the time-fractional operator in Eq. (11) is based on Caputo definition. In order to employ Grünwald–Letnikov
definition for discretization of time-fractional operator in Eq. (11), we see from Eq. (7) that for 0 < a 6 1, the difference be-
tween Caputo and Riemann–Liouville definitions contains only one term and depends only on the initial condition f(t=0).
Therefore, if u(x, t = 0) in Eq. (11) is small, we can employ Grünwald–Letnikov definition for numerical approximation of
time-fractional operator in Eq. (11). The most favorable case happens under the homogeneous initial conditions when all
the three definitions become equivalent. Therefore, for developing the generalized MacCormack scheme, without losing
the generality, we assume that all initial conditions of the problem are zero.

According to the definition of Grünwald–Letnikov scheme for time fractional derivatives Eq. (5) and knowing that
xa

0 ¼ 1:0, the generalized MacCormack scheme for Eq. (11) is formulated as
Predictor:
�unþ1
j ¼ �

Xnþ1

k¼1

xa
k unþ1�k

j � Dta

Dx
f n
jþ1 � f n

j

� �
; ð12Þ
and
Corrector:
unþ1
j ¼ 1

2
�
Xnþ1

k¼1

xa
k unþ1�k

j � Dta

Dx
�f nþ1

j � �f nþ1
j�1

� �
þ �unþ1

j

" #
; ð13Þ
where the variables with over bar are predicted values calculated from Eq. (12). As can be seen from Eq. (12), space derivative
is discretized forward while in the corrector formula (13) it is discretized backward. In using the classical MacCormack
scheme for hyperbolic equations (a = 1 in Eq. (11)), according to the direction of the wave propagation, the order of discret-
izing can be reversed, but in the present study the mentioned order has lead to better results. By setting a = 1.0 in Eqs. (12)
and (13), classical MacCormack scheme for hyperbolic equations is obtained. We have sought the rate of convergency of the
generalized MacCormack scheme through numerical tests and found that GMcC scheme has second-order spatial rate of con-
vergency and (1 + a) as the temporal rate of convergency. The detailed results are presented in Section 5.

3.1.1. Stability analysis
In this section, by using Von Neumann stability criterion for fractional partial differential equations [18], we analyze the

stability of GMcC scheme. In order to analyze the stability of MacCormack scheme (12) and (13) for scalar time-fractional
conservation Eq. (11), we should find a choice for the flux function f(u). To do this, one simple possible choice is f(u) = cu
where c = const which leads to linear time-fractional equation. This choice, as will be shown later, will enable us to easily
extend the results of the stability analysis for a scalar time-fractional conservation equation to system of time-fractional con-
servation equations. This is a very established approach in studying hyperbolic equations which has been employed in the
present study as an idea to be used for time-fractional conservation equations.

First, by setting f(u) = cu and through inserting the predicted values from Eq. (12) into Eq. (13) and after some mathemat-
ical manipulation, we arrive at the following equation:
unþ1
j ¼ �

Xnþ1

k¼1

xa
k unþ1�k

j � 1
2

cDta

Dx
�
Xnþ1

k¼1

xa
k unþ1�k

j þ
Xnþ1

k¼1

xa
k unþ1�k

j�1 þ un
jþ1 � un

j

" #
þ 1

2
c2Dt2a

Dx2 un
jþ1 � 2un

j þ un
j�1

h i
: ð14Þ
Letting:
en
j ¼ un

j � Un
j ;
where Un
j is the approximate solution of Eq. (14), the corresponding roundoff error equation is obtained:
enþ1
j ¼ �

Xnþ1

k¼1

xa
ke

nþ1�k
j � 1

2
cDta

Dx
�
Xnþ1

k¼1

xa
ke

nþ1�k
j þ

Xnþ1

k¼1

xa
ke

nþ1�k
j�1 þ en

jþ1 � en
j

" #
þ 1

2
c2Dt2a

Dx2 en
jþ1 � 2en

j þ en
j�1

h i
: ð15Þ
For analyzing the stability of the algorithm, we can assume that the solution of Eq. (15) can be written in the form of
en

j ¼ Cnei/jDx where the Cn are the Fourier series coefficients of en
j and i ¼

ffiffiffiffiffiffiffi
�1
p

. The linear stability condition is satisfied as
long as G does not grow as time goes to infinity, i.e. G = jCn/C0j 6 1 for all n.
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Inserting en
j ¼ Cnei/jDx in Eq. (15) and setting ma = cDta/Dx and after some mathematical manipulation, we have:
Cnþ1 ¼ Cn �xa
1 �

1
2
ma xa

1 �1þ cosð/DxÞ � i sinð/DxÞð Þ þ cosð/DxÞ þ i sinð/DxÞ � 1
� �	 


þ �
Xnþ1

k¼2

xa
k Cnþ1�k �

1
2
ma �

Xnþ1

k¼2

xa
k Cnþ1�k þ

Xnþ1

k¼2

xa
k Cnþ1�k cosð/DxÞ � i sinð/DxÞð Þ

 !" #
þ Cnm2

a cosð/DxÞ � 1ð Þ:

ð16Þ
Theorem 1. The generalized MacCormack scheme (12) and (13) is stable if ma 6 1.
Proof. In order to prove Theorem 1, we use mathematical induction as follows. For n = 0, the last bracket in Eq. (16) vanishes
and by considering xa

1 ¼ �a, after some trigonometric simplifications we obtain:
C1

C0

���� ���� ¼ a� ma sin2ðb=2Þða� 1þ 2maÞ
� �

� i
ma sinðbÞ

2
ðaþ 1Þ

���� ����; ð17Þ
where b = /Dx.
By plotting the amplification factor jCl/C0j61 with respect to ma, we will find that G0 6 1 holds as long asma 6 1. Fig. 1

shows the validity of this statement for some values of a. It is obvious from Fig. 1 that for different values of a, the magnitude
of the amplification factor remains less than or equal 1 only for ma 6 1. As ma becomes greater than 1, i.e. ma = 1.1 in Fig. 1, the
magnitude of the amplification factor extends that of unit circle which is the stability margin. In other words, it violates the
stability criterion G0 6 1 for the values of ma greater than 1.

Being valid for the case of n = 0 under the condition of ma 6 1, we assume that jCl/C0j61 is valid for l = 1, . . .,n under the
same condition i.e. ma 6 1. Returning back to Eq. (16), we rewrite it in the following form:
Cnþ1 ¼ d1Cn � d2

Xnþ1

k¼2

xa
k Cnþ1�k; jClj 6 jC0jðl ¼ 1; . . . ;nÞ

d1 ¼ �xa
1 �

1
2
ma xa

1 �1þ cosðbÞ � i sinðbÞð Þ þ cosðbÞ þ i sinðbÞ � 1
� �

þ m2
a cosðbÞ � 1ð Þ;

d2 ¼ 1þ 1
2
ma �1þ cosðbÞ � i sinðbÞð Þ:

ð18Þ
Fig. 1. Polar plot of G0 modulus: (a) a = 0.3, (b) a = 0.5, (c) a = 0.7, and (d) a = 0.9.
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Now, by using the properties of the coefficients described in Lemma 1 of Ref. [18], we have:
Cnþ1 6 d1Cn � d2

Xnþ1

k¼2

xa
k Cnþ1�k;

Cnþ1 6 d1 � d2

Xnþ1

k¼2

xa
k

" #
C0 ¼ d1 � d2

Xnþ1

k¼2

xa
k �xa

1

 !" #
C0 ¼ d1 � d2

Xnþ1

k¼2

xa
k þa

 !" #
C0 6 d1 þ d2 �

Xnþ1

k¼2

xa
k �a

 !" #
C0;

Cnþ1

C0

���� ���� 6 d1 þ d2ð1�aÞj j; ð19Þ
If we replace the relations for d1 and d2 from Eq. (18) in the last inequality of Eq. (19) we obtain:
G ¼ Cnþ1

C0

���� ���� 6 �mai sinðbÞ þ 1þ m2
a cosðbÞ � 1ð Þ þ 1

2
ma cosðbÞ

���� ����: ð20Þ
Therefore in order to complete the mathematical induction, we should show that the inequality of Eq. (20) is valid under the
condition of ma 6 1 like for the case of n = 0. Since, amplification factor G = jCn+1/C0j in Eq. (20) depends only on ma and b, and does
not depend ona explicitly, therefore the polar plots of amplification factor with respect to ma is the same for all a. For this reason,
only the plot of amplification factor G for a typical value ofa i.e. 0.8 is given which is the same for other values ofa. From Fig. 2 we
find that G = jCn+1/C0j 6 1 holds only under the condition of ma 6 1 i.e. the same condition of the case n = 0. In other words, the
magnitude of the amplification factor forma = 1 coincides with the unit circle and forma < 1 remains inside the unit circle which is
the stability margin. Thus, mathematical induction is complete and Theorem 1 is proved. h
3.2. Generalized MacCormack scheme for systems of time fractional conservation equations

In the previous section, we formulated the GMcC scheme for a scalar time-fractional conservation equation and investi-
gated its stability through Von Neumann stability criterion. In this section, we extend the discussions of the previous section
for systems of time-fractional conservation equations. Consider the following systems of time-fractional conservation
equations:
oaE
ota þ

oF
ox
¼ 0; ð21Þ
where vectors E ¼
E1

..

.

Em

264
375; F ¼ FðEÞ ¼

F1

..

.

Fm

264
375 and a ¼

a1

..

.

am

264
375 are the vector of conserved variable, flux and order of differ-

entiation, respectively. m is the number of coupled time-fractional equations. We find that the difference between systems
of time-fractional Eq. (21) with scalar time-fractional conservation Eq. (11) is that the scalar quantities for conserved variable
u and flux f in (11) is now replaced by vector of conserved variables and flux functions.

Now, we formulate GMcC scheme for system of Eq. (21) in the following form:
Predictor:
eEnþ1
j ¼ �

Xnþ1

k¼1

xa
k Enþ1�k

j � Dta

Dx
Fn

jþ1 � Fn
j

� �
: ð22Þ
Fig. 2. Polar plot of G modulus.
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Corrector:
Enþ1
j ¼ 1

2
�
Xnþ1

k¼1

xa
k Enþ1�k

j þ eEnþ1
j � Dta

Dx
eF nþ1

j � eF nþ1
j�1

� �" #
; ð23Þ
where the values with tilde (�) denote the predicted values computed from Eq. (22).
In order to perform the stability analysis for systems of equations and use the results of the stability analysis of scalar

time-fractional conservation equation, we rewrite Eq. (21) as
oaE
ota þ

oF
oE

	 

oE
ox
¼ 0 ð24Þ
or
oaE
ota þ ½A�

oE
ox
¼ 0; ð25Þ
where [A] is called Jacobian matrix and is equal to [oF/oE]. Now, using a similar approach that we have employed for study-
ing the stability of a linear scalar time-fractional equation and applying the GMcC scheme (22) and (23) on systems of Eq.
(25), the following equation is obtained:
½G� ¼ Cnþ1

C0

���� ���� 6 �½S�½A�i sinðbÞ þ ½I� þ ½S�½A�ð Þ2 cosðbÞ � ½I�ð Þ þ 1
2
½S�½A� cosðbÞ

���� ����; ð26Þ
where [G] and [I] are amplification and identity matrix, respectively. The matrix [S] is the matrix of the ratio of time to space
step sizes and is defined as
½S� ¼

Dta1

Dx 0 0

0 . .
.

0
0 0 Dtam

Dx

2664
3775: ð27Þ
Comparing Eq. (26) with Eq. (20) we observe that Eq. (26) is the vectorial counterpart of Eq. (20) in which the constant c
and Dta/Dx are replaced by [A] and [S], respectively. In other words, the CFL number ma = cDta/Dx in the scalar time-frac-
tional conservation equation is now replaced by CFL matrix [ma] = [S][A] in systems of time-fractional conservation equations.

By comparing Eq. (26) with Eq. (20) we find that stability is achieved when the largest eigenvalue of the CFL matrix
[ma] = [S][A], kmax, satisfies the following condition:
jkmaxj 6 1: ð28Þ
In this way, GMcC scheme is formulated for solving systems of time-fractional Eq. (21). Actually, the same approach of
extending a numerical scheme from a single model equation to systems of equations which is very common in hyperbolic
systems of equations has been now generalized for time-fractional equations. This offers us great opportunities for general-
izing well-established approaches from classical conservation equations i.e. hyperbolic equations, to fractional conservation
equations in future.

In the next section, we apply GMcC scheme (22) and (23) for solving the generalized Cattaneo equation which is a special
case of systems of Eq. (21). The CFL number of Eq. (28) is also found for the generalized Cattaneo equation.

4. Numerical solution of generalized Cattaneo equation

In this section, we present the numerical solution of the generalized Cattaneo equation. In addition to GMcC scheme, we
also use a totally implicit scheme in solving this equation.

4.1. Generalized MacCormack scheme

Having formulated the GMcC scheme for systems of time-fractional equations, in this section we formulate it for general-
ized Cattaneo equation. For this scheme, we use the idea of LOA for solving the generalized Cattaneo equation i.e. instead of
eliminating flux term from the two Eqs. (2) and (9) and arriving at a single higher-order undecomposed governing Eq. (10),
we solve a system of two coupled decomposed equations i.e. m = 2 in (21).

First, we rewrite system of governing Eqs. (9) and (2) in the following vector form:
obE
otb
þ oF

ox
¼ H; ð29Þ
where vectors E, F, H and b are the vector of conserved variable, flux, source term and order of differentiation, respectively,
and for the system of Eqs. (9) and (2), they are defined as follows:
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E ¼
f

u

	 

; F ¼

D
sa � u

f

	 

; H ¼

�f
sa

0

" #
; b ¼

a
1

	 

: ð30Þ
Now, we formulate GMcC scheme for system of Eq. (29) in the following form:
Predictor:
eEnþ1
j ¼ �

Xnþ1

k¼1

xa
k Enþ1�k

j � Dta

Dx
Fn

jþ1 � Fn
j

� �
þ DtaHn

j : ð31Þ
Corrector:
Enþ1
j ¼ 1

2
�
Xnþ1

k¼1

xa
k Enþ1�k

j þ eEnþ1
j � Dta

Dx
eF nþ1

j � eF nþ1
j�1

� �
þ Dta eHnþ1

j

" #
: ð32Þ
In this way, knowing the values of E, F and H at time step (n), the predicted values (�) are calculated via Eq. (31) and the
corrected values at time step (n + 1) consequently can be found via Eq. (32).

For the vectors defined in (30), the Jacobian matrix [A] and also the matrix [S] are found to be:
½A� ¼ 0 D
sa

1 0

	 

; ½S� ¼

Dta
Dx 0
0 Dt

Dx

" #
: ð33Þ
According to (33), the CFL matrix [ma] = [S][A] becomes:
½ma� ¼
0 D

sa
Dt
Dx

Dta
Dx 0

" #
: ð34Þ
According to the discussion made in the previous section, GMcC scheme (31) and (32) for solving systems of Eq. (29) is
stable when the largest eigenvalue of CFL matrix (34) is less than or equal 1. For the CFL matrix (34), the vector of eigenvalues
is found to be:
½k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Dt1þa D

sa

p
Dx

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Dt1þa D

sa

p
Dx

264
375: ð35Þ
Therefore, GMcC scheme (31) and (32) for generalized Cattaneo Eq. (29) is stable when:
kmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt1þa D

sa

q
Dx

6 1: ð36Þ
Two important results can be drawn from the obtained CFL number of (36). First, for the upper limiting case of a, i.e. a = 1,
the governing Eq. (29) reduce to classical Cattaneo equation and form two coupled hyperbolic equations. For this case, CFL
number (36) reduces to kmax ¼ Dt

ffiffiffiffiffiffiffiffiffi
D=s

p
=Dx 6 1 which is the CFL number for the classical MacCormack scheme used for

solving systems of hyperbolic Eq. (29) with a = 1.
ffiffiffiffiffiffiffiffiffi
D=s

p
is also the wave speed in classical Cattaneo equation. However, when

a reduces from 1 and approaches to 0, the combined feature of the governing equations tends to pure diffusive nature. If we
rewrite the CFL number in the following form, Dt1 +a � D/sa/Dx2

6 1, we observe that for the limiting case of a = 0, CFL num-
ber reduces to D � Dt/Dx2

6 1 which results in the conventional O(Dx2) time step for classical Fourier or Fick diffusion equa-
tions. Therefore, two limiting CFL numbers of hyperbolic and parabolic equations are correctly recovered from stability
condition (36). In addition, GMcC scheme developed in this study can be used for solving any sets of coupled time-fractional
equations that can be written in the vectorial form of (29). Also, the required CFL number can be easily found in the same
way as is done in this section.

One of the great benefits of the idea of LOA is the simultaneous computation of the flux term (heat or mass flux) with the
main variable with the same order of accuracy. This automatically eliminates the need of post-processing for computing the
flux term. Another gain of this idea is the possibility of using higher-order explicit schemes for solving anomalous diffusion
equations.

It should be mentioned that single predictor Eq. (31) can be viewed as fractional upwind scheme and can be used for solv-
ing Eq. (29). Since this fractional upwind scheme by itself does not introduce any important feature, it is not considered as a
separate scheme in the present study. However, a reasonable combination of this first-order fractional upwind scheme with
a higher-order scheme may result in developing more efficient schemes. This feature is well established in solving well-
known hyperbolic equations such as Euler, shallow water and thermal wave equations. In fact, the idea of writing the gov-
erning equations as a system of time-fractional conservation equations offers us great opportunities for generalizing higher-
order efficient numerical schemes which are used for system of hyperbolic equations. This has been successfully done for the
case of MacCormack scheme in the present study.
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For treating the boundary conditions for solving Eqs. (31) and (32), zeroth order extrapolation technique using conserved
variables [24] has been employed.

4.2. Totally implicit scheme

For the numerical formulation of totally implicit scheme HOA is used, i.e. solving Eq. (10) instead of a system of two
coupled equations. Since, the Caputo definition has been used in Eq. (10) we first need to discretize the time fractional
derivative and then proceed with the totally implicit formulation of Eq. (10). In [14,20], the authors derived a discretiza-
tion form of Caputo-based fractional derivative for the case of 0 < a < 1. However, since the order of time fractional deriv-
ative in Eq. (10) is greater than 1, the discretization formulas presented in Refs. [14,20] cannot be employed in the present
study. Therefore, we first find an approximation for the Caputo-based time fractional derivative with the fractional order
1 < b 6 2.

4.2.1. Numerical approximation of Caputo-based fractional derivative
Here, we first begin with the definition of fractional derivative based on Caputo definition. For 1.0 < b 6 2.0, Caputo def-

inition of time fractional derivative gives:
obu
otb ¼

1
Cð2� bÞ

Z tn

0

o2u
ot2 tn � sð Þ1�bds: ð37Þ
To obtain the fractional time derivative discretization, we first replace the integral term in Eq. (37) with a summation,
then the second-order time derivative in Eq. (37) is approximated by second-order backward difference to find the final dis-
cretization formulation in the time in the following form:
obu
otb ¼

1
C 2� bð Þ

Xn

k¼1

Z tk

tk�1

o2u
ot2 tn � sð Þ1�bds ¼ 1

C 2� bð Þ
Xn

k¼1

Z tk

tk�1

u x; tkð Þ � 2u x; tk�1ð Þ þ u x; tk�2ð Þ
Dt2

� �
tn � sð Þ1�bds

¼ 1
C 2� bð Þ

Xn

k¼1

u x; tkð Þ � 2u x; tk�1ð Þ þ u x; tk�2ð Þ
Dt2

� �
�
Z tk

tk�1

tn � sð Þ1�bds

¼ 1
C 2� bð Þ

Xn

k¼1

u x; tkð Þ � 2u x; tk�1ð Þ þ u x; tk�2ð Þ
Dt2

� �
� � tn � tkð Þ2�b þ tn � tk�1ð Þ2�b
h i

� 1
2� b

¼ 1
C 2� bð Þ

1
2� b

Xn

k¼1

u x; tkð Þ � 2u x; tk�1ð Þ þ u x; tk�2ð Þ
Dt2

� �
� n� kþ 1ð Þ2�b � n� kð Þ2�b
h i

� Dt2�b

¼ 1
C 2� bð Þ

1
2� b

1
Dtb

Xn

k¼1

u x; tkð Þ � 2u x; tk�1ð Þ þ u x; tk�2ð Þð Þ � n� kþ 1ð Þ2�b � n� kð Þ2�b
h i

ð38Þ
Setting:
rb ¼
1

Cð2� bÞ
1

2� b
1

Dtb ;
and shifting the indices in the summation and setting again:
xb
k ¼ k2�b � ðk� 1Þ2�b
leads to:
obuðx; tnÞ
otb ¼ rb �

Xn

k¼1

xb
k � un�kþ1

j � 2un�k
j þ un�k�1

j

� �
: ð39Þ
Eq. (39) is the discretization form of Caputo-based time fractional derivative in the case of 1.0 < b 6 2.0.

4.2.2. Implicit finite difference scheme
We discretize the three terms of Eq. (10) in the following totally implicit form:
ou
ot

����n
j

¼
3un

j � 4un�1
j þ un�2

j

2Dt
;

o1þau
ot1þa

�����
n

j

¼ obu
otb

����n
j

¼ rb �
Xn

k¼1

xb
k � un�kþ1

j � 2un�k
j þ un�k�1

j

� �
;

o2u
ox2

�����
n

j

¼
un

jþ1 � 2un
j þ un

j�1

Dx2 :
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We now arrange the discretization equation in the following form remembering that x1þa
1 ¼ 1:
� 1
Dx2

� �
un

jþ1 þ
3

2Dt
þ rb þ

2
Dx2

� �
un

j þ � 1
Dx2

� �
un

j�1

¼ 2rb � un�1
j � rb � un�2

j � rb �
Xn

k¼2

xb
k � un�kþ1

j � 2un�k
j þ un�k�1

j

� �
þ 2

Dt
un�1

j � 1
2Dt

un�2
j : ð40Þ
For solving Eq. (40), we need to solve a tridiagonal system of linear equations in each time step which can be easily done
via a TDMA solver [24]. In the next section, numerical tests demonstrate the convergence rate of O(Dt,Dx2) for fully implicit
scheme.

From the stability point of view, the authors were not able to prove the stability of Eq. (40) by using Von Neumann sta-
bility criterion employed in the previous section for the generalized MacCormack scheme but numerous numerical tests for
wide range of existing parameters i.e. time-step size, grid size and a, have been performed and no symptoms of numerical
instability have been observed. Thus, unconditional stability of fully implicit formulation (40) is likely but is not proven.
5. Numerical test

Consider the generalized Cattaneo equation with the following boundary and initial conditions:
uð0; tÞ ¼ 1:0; t > 0;
uð1; tÞ ¼ 0; t > 0; ð41Þ
uðx;0Þ ¼ 0;
ou
ot

����
t¼0
¼ 0: ð42Þ
Boundary conditions (41) impose a unit step change in the temperature of a medium from its initial conditions. For sim-
plicity, all parameters in generalized Cattaneo equation are set to unity. It should be reminded that by generalized Cattaneo
equation we mean either two coupled Eqs. (2)–(9) in decomposed form used in GMcC scheme or one single Eq. (10) used in FI
scheme.

The exact solution of the problem is found through Laplace transform and Riemann sum approximation for Laplace inver-
sion. The main advantage of this technique is the existence of only a single summation compared with most of the analytical
solutions of fractional partial differential equations which contain multiple summation terms that make numerical process-
ing more difficult than that used in this technique.

Taking the Laplace transform of Eqs. (10) and (41) and taking into account the initial conditions (42) gives:
s � �uðx; sÞ þ s1þa � �uðx; sÞ ¼ d2�uðx; sÞ
dx2 ð43Þ

�uð0; sÞ ¼ 1:0
s
;

�uð1; sÞ ¼ 0: ð44Þ
Now solving Eqs. (43) and (44) results in
�uðx; sÞ ¼ � eð�1þxÞ
ffiffiffiffiffiffiffiffiffiffiffi
sð1þsaÞ
p

� e�ð�1þxÞ
ffiffiffiffiffiffiffiffiffiffiffi
sð1þsaÞ
p

s e
ffiffiffiffiffiffiffiffiffiffiffi
sð1þsaÞ
p

� e�
ffiffiffiffiffiffiffiffiffiffiffi
sð1þsaÞ
p� � : ð45Þ
For the purpose of Laplace inversion and finding u(x,t), we have employed Riemann sum approximation technique. To do
this, we insert Eq. (45) into:
uðx; tÞ ¼ ect

t
1
2

�uðx; s ¼ cÞ þ Re
XN

n¼1

�u x; s ¼ cþ inp
t

� �
ð�1Þn

" #
; ð46Þ
where the value of c is equal to (2 + e)/t and Re is the real part of the summation. In Fig. 3, exact solution has been plotted for
some typical values of a at time t = 0.4.

As can be seen from Fig. 3, as the order of differentiation a approaches 1, hyperbolicity dominates diffusivity which allows
the propagation of step perturbation of the left boundary in the medium. For the limiting case of a = 1, the governing equa-
tion becomes damped wave equation for which the step perturbation propagates as a sharp discontinuity in the medium.

In order to compare the two numerical schemes more qualitatively, we calculate the error norms of both generalized
MacCormack and fully implicit schemes relative to the exact solution. Two error norms have been used in this study: EL1

norm and EL1 norm which are defined respectively as



Fig. 3. Exact solution of step perturbation problem at t = 0.4.

Table 1
Spatial

a

0.9

0.8

0.7

0.6
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EL1 ¼
1
N

XN

i¼1

EðiÞ; ð47Þ

E1 ¼ max EðiÞð Þji¼1...N ; ð48Þ
where
EðiÞ ¼ uðiÞ � UðiÞj j;
in which u(i) is the numerical approximation, whereas U(i) is the exact solution at each grid point.
Tables 1 and 2 show the global error and spatial EOC for FI scheme for both norms. From Tables 1 and 2 we observe that

spatial EOC for fully implicit scheme is 2. Tables 3 and 4 show the global EOC for GMcC scheme in the case of L1-norm and
L1-norm, respectively. Like the fully implicit case, second-order global rate of convergency is achieved. We can observe that
for a specified a, calculated EOC based on L1-norm is slightly higher than that based on L1-norm specially near a = 1.0. The
reason returns to the very definition of these two norms. L1-norm considers the maximum error whereas L1-norm is an aver-
age of all errors in the domain. Thus, in L1-norm the negative effect of high errors near the possible discontinuities of the
solution is smoothed by the small errors in other parts of the solution domain. For a smaller than 0.6, since the solution be-
comes completely smooth, EOC remains constant and 2.

To find the temporal EOC, space step Dx should be chosen sufficiently small in order to prevent entering the effect of spa-
tial discretization error in the calculation. Since fully implicit scheme is unconditionally stable, in choosing triple time step
sizes and also sufficiently small Dx, we do not face any problem. However, this is not the case for GMcC scheme for which we
are also restricted to satisfying the stability condition. Therefore, for each a in GMcC scheme, Dx has been chosen sufficiently
small for avoiding both spatial discretization error and also contamination of round off error.

From Tables 5 and 6, we can conclude that fully implicit scheme is globally first order convergent in time. However, from
Tables 7–9, we observe that temporal rate of convergency for GMcC scheme is around (1 + a) for three different values of a
global L1 error and EOC for fully implicit scheme at t = 0.4 for Dt = 0.00002.

EL1 L1 rate

Nx = 40 Nx = 80 Nx = 160 1.85
4.67E�03 1.25E�03 3.62E�04

Nx = 10 Nx = 20 Nx = 40 1.89
1.24E�02 3.44E�03 9.07E�04

Nx = 10 Nx = 20 Nx = 40 2.00
5.12E�03 1.29E�03 3.18E�04

Nx = 10 Nx = 20 Nx = 40 2.05
1.90E�03 4.66E�04 1.11E�04



Table 2
Spatial global L1 error and EOC for fully implicit scheme at t = 0.4 for Dt = 0.00002.

a EL1 L1 rate

0.9 Nx = 40 Nx = 80 Nx = 160 1.53
4.03E�02 1.34E�02 4.85E�03

0.8 Nx = 10 Nx = 20 Nx = 40 1.58
4.85E�02 1.75E�02 5.39E�03

0.7 Nx = 10 Nx = 20 Nx = 40 1.65
1.40E�02 4.79E�03 1.43E�03

0.6 Nx = 10 Nx = 20 Nx = 40 1.95
5.42E�03 1.28E�03 3.61E�04

Table 3
Spatial global L1 error and EOC for GMcC scheme at t = 0.4 for Dt = 0.0001.

a EL1 L1 rate

0.9 Nx = 80 Nx = 160 Nx = 320 2.06
5.18E�03 1.22E�03 2.98E�04

0.8 Nx = 40 Nx = 80 Nx = 160 2.09
3.99E�03 9.40E�04 2.20E�04

0.7 Nx = 20 Nx = 40 Nx = 80 2.14
5.93E�03 1.41E�03 3.03E�04

0.6 Nx = 20 Nx = 40 Nx = 80 2.17
2.46E�03 4.64E�04 1.21E�04

Table 4
Spatial global L1 error and EOC for GMcC scheme at t = 0.4 for Dt = 0.0001.

a EL1 L1 rate

0.9 Nx = 80 Nx = 160 Nx = 320 1.75
4.39E�02 1.66E�02 3.88E�03

0.8 Nx = 40 Nx = 80 Nx = 160 2.06
2.24E�02 5.75E�03 1.29E�03

0.7 Nx = 20 Nx = 40 Nx = 80 2.16
2.16E�02 4.84E�03 1.08E�03

0.6 Nx = 20 Nx = 40 Nx = 80 2.21
7.24E�03 1.26E�03 3.40E�04

Table 5
Temporal Global L1 error and L1 convergence rate for fully implicit scheme at t = 0.4 for Dx = 0.01.

a EL1 L1 rate

Nt = 40 Nt = 80 Nt = 160

0.9 2.15E�02 1.22E�02 6.72E�03 0.84
0.8 1.56E�02 8.11E�03 4.10E�03 0.96
0.7 1.28E�02 6.47E�03 3.21E�03 1.00
0.6 1.10E�02 5.48E�03 2.71E�03 1.01

Table 6
Temporal Global L1 error and L1 convergence rate for fully implicit scheme at t = 0.4 for Dx = 0.01.

a EL1 L1 rate

Nt = 40 Nt = 80 Nt = 160

0.9 1.19E�01 7.48E�02 4.42E�02 0.71
0.8 6.03E�02 3.20E�02 1.60E�02 0.96
0.7 3.67E�02 1.83E�02 8.96E�03 1.02
0.6 2.54E�02 1.25E�02 6.14E�03 1.02
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Table 7
Temporal Global Error and EOC for a = 0.8 and Nx = 250 for GMcC scheme at t = 0.4.

Nt EL1 L1 rate EL1 L1 rate

400 9.67E�04 – 4.16E�03 –
800 3.28E�04 1.56 1.66E�03 1.33
1600 8.48E�05 1.95 4.72E�04 1.81

Table 8
Temporal Global Error and EOC for a = 0.7 and Nx = 200 for GMcC scheme at t = 0.4.

Nt EL1 L1 rate EL1 L1 rate

800 4.57E�04 – 1.24E�03 –
1600 1.58E�04 1.53 4.90E�04 1.34
3200 4.32E�05 1.87 1.53E�04 1.68

Table 9
Temporal Global Error and EOC for a = 0.6 and Nx = 125 for GMcC scheme at t = 0.4.

Nt EL1 L1 rate EL1 L1 rate

1333 3.62E�04 – 7.46E�04 –
2666 1.93E�04 0.91 4.34E�04 0.78
5332 6.62E�05 1.55 1.76E�04 1.30

Table 10
Performance results for GMcC scheme for pulse perturbation, N = 201.

a Dt EL1 EL1 CPU time (s)

0.95 3.39E�03 5.80E�03 1.18E�01 0.11
0.9 2.47E�03 2.95E�03 3.72E�02 0.17
0.85 1.73E�03 1.95E�03 1.58E�02 0.36
0.8 1.17E�03 6.09E�04 4.79E�03 0.73
0.75 7.43E�04 4.80E�04 2.54E�03 1.80
0.7 4.44E�04 2.50E�04 2.54E�03 5.19
0.6 1.23E�04 5.60E�05 2.54E�03 76.19

Table 11
Performance results for fully implicit scheme for pulse perturbation, N = 201.

a Dt EL1 EL1 CPU time (s)

0.95 2.00E�03 1.15E�02 1.89E�01 16.44
0.9 2.00E�03 5.71E�03 7.25E�02 16.41
0.85 2.00E�03 3.28E�03 3.25E�02 16.50
0.8 2.00E�03 2.34E�03 1.69E�02 16.50
0.75 2.00E�03 1.98E�03 9.92E�03 16.48
0.7 2.00E�03 1.78E�03 6.47E�03 16.48
0.6 2.00E�03 1.57E�03 3.52E�03 16.56
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namely 0.8, 0.7 and 0.6. Compared with previously introduced schemes, GMcC scheme has a very good temporal order of
convergency which is due to its predictor–corrector formulation.

In order to quantify some features of computational efficiencies of GMcC and FI schemes more precisely, the solution of
generalized Cattaneo equation under the following pulse condition at x = 0 has been sought:
uðx ¼ 0Þ ¼ 1:0; 0 < t 6 0:04;
uðx ¼ 0Þ ¼ 0:0; 0:04 < t;

�
uð1; tÞ ¼ 0; 0 < t:

ð49Þ
For both schemes, the same number of grid points viz. N = 201, has been used and the results are calculated to a fixed final
time of t = 0.4 s. The results of Tables 10 and 11 show that GMcC scheme outperforms FI scheme with regard to the consump-
tion of CPU time for a complete simulation to t = 0.4 s, specially for a near 1, in addition to smaller norm errors. This great



Fig. 4. Temperature distribution for pulse perturbation problem: (a) a = 0.95, (b) a = 0.9, (c) a = 0.85, (d) a = 0.8, (e) a = 0.75, (f) a = 0.7, and (g) a = 0.6.
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Fig. 5. Effect of CFL number on spurious oscillations in GMcC scheme.
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speed-up in the CPU time is because of the explicit nature of GMcC scheme and also LOA that has been used in its formu-
lation. It should be remembered that this high speed-up in CPU time has been achieved despite the computation of an extra
term (flux term) in each time step. However, for a = 0.6 we observe that CPU time of GMcC scheme dramatically increases
which is due to its stability condition. On the other hand, since Dx and Dt are fixed irrespective to a, CPU time of FI scheme is
fixed. Also, the graphical results in Fig. 4 show that GMcC scheme is an efficient scheme in capturing the discontinuities from
both sides of pulse perturbation problem of Eq. (49).

One interesting property of GMcC scheme is that, like integer-order MacCormack scheme, it works well with higher val-
ues of CFL number. In integer-order MacCormack scheme, as we get far from CFL = 1.0, the number and the amplitude of the
spurious oscillations near a discontinuity increase. In order to show that this property is also valid for GMcC scheme, we
repeat the numerical test of step perturbation problem for a = 0.95 with large mesh sizes. In Fig. 5, we can see that as
CFL number decreases, the frequency and amplitude of spurious oscillations in the numerical solution of GMcC scheme in-
crease. It is also observable from Fig. 4 that FI scheme is of diffusive nature in contrast to dispersive behavior of GMcC
scheme near the discontinuities. Both of these features vanish as the order of differentiability a, i.e. hyperbolicity, decreases
from 1.

From the obtained results, we can draw the following conclusions: first, when a is near 1 and the governing equation al-
lows the propagation of discontinuity in the medium, GMcC scheme is completely preferred to fully implicit scheme. The
reason returns to higher rate of convergency for GMcC scheme in comparison to fully implicit scheme. In other words, in
using fully implicit scheme for a near 1, as Fig. 4 shows, we need to use finer mesh in order to capture the discontinuity.
Subsequently, because of the implicit nature of the scheme, computational costs greatly increase. This feature is observable
from the results of Table 11. Second, for a sufficiently far from 1 and in the absence of non-smooth solution, fully implicit
scheme can be preferred to GMcC scheme because of the stability limitation of GMcC scheme. As a becomes smaller, stability
region of GMcC scheme shrinks and for a fixed Dx, Dt becomes very small which in turn increases the computational time.
This feature is also evident from Table 10. Therefore, for lower values of a, resorting to fully implicit scheme seems to be
necessary.

6. Concluding remarks

In the present study, the generalized Cattaneo equation based on Caputo definition has been first recovered by applying
generalized Taylor formula on single delay equation. Then, based on two different formulating ideas namely lower-order and
higher-order approaches, two finite difference schemes namely an explicit predictor–corrector and a one-step totally impli-
cit scheme have been developed. LOA enables us to compute the flux term simultaneously with the main variable. For the
latter which has been called generalized MacCormack scheme, stability has been investigated through Fourier method and
the corresponding CFL number has been derived. For fully implicit scheme, numerical tests suggest unconditional stability
but it has not been proven. The spatial and temporal experimental orders of convergencies of both schemes have been ob-
tained through a numerical test. It was found that both schemes are second-order accurate in space. For temporal rate of
convergency, fully implicit scheme is first order accurate while the rate of convergency for generalized MacCormack scheme
is (1 + a). Then, the domain of applicability of both schemes has been discussed and it was proposed that for a near 1, GMcC
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scheme be used because of its explicit formulation, higher rate of convergency and discontinuity capturing capabilities.
While for lower values of a, because of the diffusion dominant nature of the governing equations, we resort to fully implicit
scheme.

Treating the generalized Cattaneo model through fractional Taylor series expansion and formulating it based on LOA can
have applicability in other fractional diffusion equations. In the same way as for a set of pure hyperbolic equations, solving a
set of low-order fractional equations may have tremendous benefits compared to solving a higher-order fractional diffusion
equation.

The way of treating governing equations as a system of time-fractional conservation equations offers us great advantage
of generalizing efficient and high-order numerical schemes of classical conservation equations to fractional ones. The gen-
eralization of classical MacCormack scheme in the present study paves the way for developing new and higher-order numer-
ical methods for anomalous diffusion equations in future.
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